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Abstract. We examine the skill of a new approach to cli-
mate field reconstructions (CFRs) using an online paleocli-
mate data assimilation (PDA) method. Several recent studies
have foregone climate model forecasts during assimilation
due to the computational expense of running coupled global
climate models (CGCMs) and the relatively low skill of these
forecasts on longer timescales. Here we greatly diminish
the computational cost by employing an empirical forecast
model (linear inverse model, LIM), which has been shown
to have skill comparable to CGCMs for forecasting annual-
to-decadal surface temperature anomalies. We reconstruct
annual-average 2 m air temperature over the instrumental pe-
riod (1850–2000) using proxy records from the PAGES 2k
Consortium Phase 1 database; proxy models for estimating
proxy observations are calibrated on GISTEMP surface tem-
perature analyses. We compare results for LIMs calibrated
using observational (Berkeley Earth), reanalysis (20th Cen-
tury Reanalysis), and CMIP5 climate model (CCSM4 and
MPI) data relative to a control offline reconstruction method.
Generally, we find that the usage of LIM forecasts for online
PDA increases reconstruction agreement with the instrumen-
tal record for both spatial fields and global mean tempera-
ture (GMT). Specifically, the coefficient of efficiency (CE)
skill metric for detrended GMT increases by an average of
57 % over the offline benchmark. LIM experiments display
a common pattern of skill improvement in the spatial fields
over Northern Hemisphere land areas and in the high-latitude
North Atlantic–Barents Sea corridor. Experiments for non-
CGCM-calibrated LIMs reveal region-specific reductions in
spatial skill compared to the offline control, likely due to as-
pects of the LIM calibration process. Overall, the CGCM-
calibrated LIMs have the best performance when considering
both spatial fields and GMT. A comparison with the persis-

tence forecast experiment suggests that improvements are as-
sociated with the linear dynamical constraints of the forecast
and not simply persistence of temperature anomalies.

1 Introduction

Climate field reconstructions (CFRs) aim to provide essen-
tial information on climate variability beyond the instrumen-
tal record. These experiments take noisy and sparse proxies
(e.g., tree rings, ice cores, isotope ratio measurements) and
use them to infer a spatial estimate of relevant climate vari-
ables. A common approach to CFR uses a statistical regres-
sion model calibrated on the instrumental record to project
as far into the past as data will allow (e.g., Mann et al., 1998,
2009; Smerdon et al., 2011b, see Smerdon et al., 2011a, for
a discussion and comparison of methods). These techniques
provide a useful estimate of past spatial patterns (Wahl and
Smerdon, 2012) but also have inherent limitations. For ex-
ample, regression-based CFRs assume climate state to be a
function of the proxy data, which can lead to an underesti-
mation of past climate anomaly amplitudes (Smerdon et al.,
2011b; Wahl and Smerdon, 2012). Furthermore, because re-
gression methods produce past spatial fields through combi-
nations of primary variability modes (i.e., empirical orthogo-
nal functions, EOFs), the resulting field is not guaranteed to
be a physically consistent solution.

An alternate method of performing CFRs known as pa-
leoclimate data assimilation (PDA) can circumvent some of
the limitations inherent in regression-based methods. PDA
broadly characterizes a set of techniques where observa-
tional information from proxy data is combined with dynam-
ical information from climate models. Recently, the ensem-
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ble Kalman filter (EnKF) was adapted for use with time-
averaged observations like those used in CFRs (Dirren and
Hakim, 2005; Huntley and Hakim, 2010). Studies using the
EnKF method and idealized pseudo-proxy experiments show
that it operates well under sparse data availability (Bhend
et al., 2012) and outperforms modern statistical CFR meth-
ods (Steiger et al., 2014). More recently, EnKF PDA was
tested with real proxy data in the Last Millennium Reanal-
ysis project (LMR; Hakim et al., 2016) and shows promis-
ing skill in reconstructing robust spatial fields in a computa-
tionally efficient manner. Due to the expense of performing
coupled global climate model (CGCM) simulations and rela-
tively low forecast skill, the initial EnKF adaptation for PDA
does not use a forecast and instead reconstructs each time pe-
riod independently using climatological data. This is known
as an offline approach. The EnKF method is traditionally ac-
companied by forward model forecasts to translate informa-
tion between analysis time periods (e.g., reanalysis products
of the instrumental era). Dynamical constraints from these
forecasts can increase physical consistency and reconstruc-
tion skill given that the model has sufficient predictability
on proxy timescales (e.g., Pendergrass et al., 2012). For CFR
applications, predictability on seasonal and longer timescales
is required. Ocean memory can be leveraged for interannual
(e.g., El Niño–Southern Oscillation, ENSO) to potentially
decadal predictability (Branstator et al., 2012). However, at
this timescale coupled climate models only seem to capture
linearly predictable dynamics (Newman, 2013).

Online assimilation has been attempted using other PDA
techniques. Crespin et al. (2009) use forecasts from an
Earth system model of intermediate complexity (EMIC)
in conjunction with the ensemble selection PDA method
(see Goosse et al., 2006, 2010) to reconstruct surface tem-
peratures but do not investigate a comparison with an of-
fline method. Annan and Hargreaves (2012) perform a
pseudo-proxy experiment using a weighted ensemble selec-
tion method and a persistence forecast to reconstruct surface
temperatures but find no benefit compared to their offline ex-
periments. Matsikaris et al. (2015) take a similar approach to
Crespin et al. (2009) but used an ensemble of decadal fore-
casts from a coarse-resolution CGCM instead of an EMIC.
The authors find that the use of CGCM forecasts has skill,
but it is not discernibly superior to the offline method. Possi-
ble reasons for the lack of improvement include low skill for
regional decadal forecasts of temperature and issues related
to ocean initialization for each decadal interval.

These results suggest that neither the simple persistence
forecast nor a small ensemble of decadal CGCM forecasts
add significant information to CFRs. In order to test the vi-
ability of a more traditional EnKF method, we require the
ability to perform annual forecasts for longer time spans (the
past millennium) and in large ensembles (∼ 100 members).
These requirements rule out the use of a CGCM. Instead,
we explore a simple, empirically based forecast from a lin-
ear inverse model (LIM; Penland and Sardeshmukh, 1995).

A LIM encodes the linear dynamical properties of a system
and produces forecasts that are subject to the constraints of
its derived linear modes. The forecast skill of LIMs is such
that they are currently used for operational ENSO forecasts
(Newman et al., 2009). Moreover, recent studies show LIM
skill to be comparable to that of CGCMs when performing
annual-to-decadal hindcast experiments over the instrumen-
tal era (Newman, 2013; Huddart et al., 2016).

Here, we propose a computationally efficient online data
assimilation approach for use in paleoclimate field recon-
structions. The primary goal is to investigate whether the
addition of dynamical constraints with a forecast in the on-
line case can increase reconstruction skill relative to the of-
fline EnKF method, which has no forecasting. We perform
a series of reconstruction experiments using annual forecasts
from a cost-efficient LIM. Global average and spatial recon-
structions from the online experiments are compared to re-
sults from both a persistence forecast method and the offline
method of Hakim et al. (2016). In Sect. 2 we discuss the ba-
sics of the EnKF method and define the use of LIM forecasts
in reconstruction experiments. Section 3 details the datasets
used and the general experimental configuration. Section 4
discusses and compares results between the online and of-
fline reconstructions, followed by conclusions in Sect. 5.

2 Online PDA

The LMR framework (Hakim et al., 2016) provides a set-
ting to run many computationally efficient realizations of
an offline climate reconstruction. Here we begin with it as
the basis for our implementation and investigation of online
PDA. Central to the LMR framework is the use of the EnKF
(Kalnay, 2003), which assumes Gaussian distributed errors.
The EnKF update equation (Eq. 1) describes the calculation
of a posterior (analysis) state vector xa through the optimal
update to a prior (background) state vector xb using proxy
information,

xa = xb+K[y−H(xb)]. (1)

The innovation, [y−H(xb)], characterizes new information
content as a difference between proxy observations in vector
y and observations estimated from the prior byH(xb) (here-
after denoted as ye). H() is a potentially nonlinear operator
that maps the prior state into observation space. The Kalman
gain matrix K, defined by Eq. (2), spreads information into
the analysis weighted by prior covariance and the observa-
tional error covariance matrix R:

K= cov(xb,ye)[cov(ye,ye)+R]−1, (2)

where cov(a,b) represents a covariance expectation. The
LMR framework uses a variant of the EnKF update, known
as an ensemble square root filter (EnSRF; Whitaker and
Hamill, 2002). This process updates the ensemble mean and
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perturbations from the mean separately, allowing for the se-
rial assimilation of proxy data and simplification of the up-
date calculations.

Typical implementations of the EnKF method include a
model forecast between analysis times. As stated earlier, the
computational expense and low skill of CGCM forecasts
prompted the use of the offline method where each year is re-
constructed independently without forecasting. Here, instead
of using static prior (xb) at the beginning of each reconstruc-
tion year, the current year’s posterior analysis is forecast for-
ward by 1 year with a LIM defined by

xf
b =G1xa. (3)

The term G1 is a mapping term calculated from the calibra-
tion of a LIM that maps the current state to a forecasted state
1 year later. Details of the EnKF reconstruction algorithm
can be found in Appendix A. The formulation of the LIM
used here is described in the following section.

2.1 Linear inverse model formulation

The LIM (e.g., Penland and Sardeshmukh, 1995) used in this
study closely follows the implementation described in New-
man (2013). The basic equation describes a linearized dy-
namical system

dx
dt
= Lx+ ξ (4)

as the tendency of an anomaly state vector x, given by a dy-
namical operator L, which is linearized about a mean state,
plus random white noise, ξ . The dynamical operator L is as-
sumed to be constant in time. After integrating (Eq. 4) in
time, the solution is a mapping of x at time t (in years) to a
state at time t + 1:

x(t + 1)=G1x(t)+ σ (t), (5)

where G1 is equivalent to exp(L). As in Newman (2013),
we choose to empirically estimate G1 rather than L due to
sampling deficiencies of a few highly damped eigenmodes of
L on an annual timescale. Each LIM is constructed using an
EOF basis, retaining the leading eight modes of variability.
See Appendix B for a summary of the details associated with
the G1 calculation.

While the simplicity of a LIM makes it well suited for the
current application, it also has issues to be considered. First,
LIM forecasts are performed using an EOF basis derived
from the calibration data. The EOF basis is used to maximize
the variance captured by the fewest degrees of freedom. Al-
though the dominant modes of variability can change in time
during the reconstruction period, the space spanned by the
variability cannot. This means that variability that falls out-
side the span of the EOFs will not be resolved. A second
issue is that the LIMs tend to be damped (modes of L decay
in time), which reduces the ensemble variance; we elaborate
on this issue in the next section.

2.2 Ensemble calibration

In any ensemble forecast setting, a basic assumption is that
the sample of ensemble members gives a good approxima-
tion to the statistics of the full system (Murphy, 1988). Sam-
pling error often results in too-small variance, which can
cause filter divergence, where observational information is
under-weighted relative to the forecast prior and the ensem-
ble variance collapses toward zero. The online PDA tech-
nique presented here is especially vulnerable to filter diver-
gence because all eigenmodes of G1 are damped (negative
real eigenvalues). Moreover, the conversion of the analysis
(xa) into EOF space at each time step removes any spatial
information that does not project upon the retained modes
of a given LIM. Consequently, LIM forecasts lose ensemble
variance in time.

There is a variety of well-tested methods available to ad-
dress information loss in the forecast ensemble. Here we use
an adaptation of the hybrid ensemble Kalman filter and 3-D
variational scheme (Hamill and Snyder, 2000) to prevent fil-
ter divergence and to facilitate comparison with the offline
PDA technique. This technique handles the loss of ensemble
variance in the forecast ensemble (xf

b) by blending it with a
static source (xs

b), which is the same climatological prior that
is used independently for each year in the offline method. As
a result, the update equations use a blended prior state x̂f

b
(Eq. 6) and a blended Kalman gain term K̂ (Eq. 7):

x̂f
b = ax

f
b+ (1− a)xs

b (6)

K̂=
(a)cov(x̂f

b, ŷ
f
e)+ (1− a)cov(xs

b,y
s
e)

(a)cov(ŷf
e, ŷ

f
e)+ (1− a)cov(ys

e,y
s
e)+R

. (7)

Appendix A provides details on how this is incorporated into
the reconstruction algorithm.

In these hybrid data assimilation (DA) equations, the pa-
rameter a controls the relative weighting between static and
forecast information sources. When a = 0.0, reconstructions
are identical to the offline case, wherein the prior x̂f

b is re-
set to the static prior for every year with no blending. When
a = 1.0, only forecast information is used, with no contribu-
tion from static information.

3 Data and experimental configuration

The relative forecast skill of a LIM is dependent on the data
used to empirically derive the mapping term G1. For this rea-
son, we explore LIMs calibrated on four different datasets.
CGCM calibration data are used from two last-millennium
climate simulations in the Coupled Model Intercomparison
Project phase 5 (CMIP5; Taylor et al., 2012): the Community
Climate System Model v4 (CCSM4; Landrum et al., 2013)
and the Max Planck Institute Earth system model paleo-
mode (MPI). These simulations cover a 1000-year preindus-
trial (850–1850 CE) time period, including volcanic forcing
events (aerosols and greenhouse gases), solar variability, and
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human-related land cover changes. The 20th Century Reanal-
ysis (20CR; Compo et al., 2011), a DA synthesis of observa-
tions and a weather forecast model, provides over 150 years
of reanalysis data spanning the instrumental record (1850–
2012). Finally, we use the Berkeley Earth surface tempera-
ture dataset (BE; Rohde et al., 2013) for observational cal-
ibration. BE provides a 65-year sample (1960–2014) with
nearly complete global coverage. The different LIM calibra-
tion datasets used here span linear modes of predictability
derived from model space to those of observations.

The basic configuration we use for all experiments, in-
cluding the offline control, involves a choice of data to sam-
ple as the static prior ensemble, an instrumental data source
to calibrate proxy observation models, and a proxy record
dataset. For the static prior, we use annually-averaged 2 m
air temperature anomalies from the CCSM4 last-millennium
simulation. The observation models for proxy data are cali-
brated against the NASA Goddard Institute for Space Stud-
ies surface temperature analysis dataset (GISTEMP; Hansen
et al., 2010) by linearly regressing the proxy time series
against the nearest grid point in the calibration data (for de-
tails, see Hakim et al., 2016). All experiments use annually-
resolved proxy records from the PAGES 2k Consortium
(2013) database. These proxies have been ascertained to co-
vary regionally with temperature and include tree rings, ice
cores, corals, sediment cores, and speleothems. Only proxies
with a minimum of 10 years overlapping with the observation
model calibration data, and a minimum calibration-fit corre-
lation of 0.2 are used. It should be noted that the correlation
threshold is not strictly necessary, but Hakim et al. (2016)
found that this threshold did not quantitatively affect the re-
construction results. Here, the reduction in proxies to those
with more information helps reduce computational costs, al-
lowing a larger number of reconstruction experiments.

We reconstruct annual-mean 2 m air temperature anoma-
lies for the period of 1850–2000 CE as in Hakim et al. (2016).
Using the four LIM calibrations, we search the parameter
space of 0≤ a ≤ 1 for a weighting between static and fore-
cast information sources that improves the reconstruction
compared to the offline method. We judge improvements by
means of our chosen skill metrics (coefficient of efficiency,
CE; correlation; and continuous ranked probability score,
CRPS) for both GMT and spatial fields. Additionally, we per-
form a persistence experiment for comparison against LIM-
based performance, where the posterior for year t is used
as the prior for year t + 1. The persistence forecast uses the
same hybrid PDA blending scheme as the LIM forecast ex-
periments to mitigate the effects of reductions in ensemble
variance from the assimilation process. We account for the
sensitivity to the proxy data used in a CFR through random
resampling of available proxy data and the static prior en-
semble. A single realization uses a random sample of 75 %
of the usable proxy records and a 100-member sample of
anomaly states from the prior. A total of 100 realizations
are performed for each LIM calibration and blending coef-

ficient. In order to make the realizations consistent between
the experiments using different blending coefficients, we en-
sure that the same sequences of random samples are taken
by seeding the random number generator for each a value.
In total, this gives 104 reconstructions of the climate state for
each experiment. These reconstructions are then averaged to
give the final analysis. See Sect. S1 in the Supplement for a
brief discussion of the computational costs associated with
these experiments.

Skill metrics

The primary skill metrics used are correlation and the CE
(Eqs. 8, 9; Nash and Sutcliffe, 1970). Correlation gives
an overall sense of signal timing (phase), while CE is a
stricter metric that is sensitive to signal timing, amplitude,
and bias. Using these metrics, we compare the reconstructed
ensemble-mean1 values x against GISTEMP validation val-
ues v. The value τ represents the number of validation times
available (in this case representing the GISTEMP timespan
of 1880–2000), an overbar (e.g., v̄) denotes a temporal av-
erage, and σx and σv are the standard deviations of the re-
spective time series. Skill scores are compared for the re-
constructed global mean temperature (GMT) and spatial grid
points.

corr=
1
τ

τ∑
t=1

(xt − x̄)(vt − v̄)
σxσv

(8)

CE= 1−
∑τ
t=1(vt − xt )2∑τ
t=1(vt − v̄)2 (9)

We also use the CRPS (Gneiting and Raftery, 2007) as a
comparison against CE skill metrics.

CRPS=
τ∑
t=1

(
1
K

K∑
i

∣∣∣x(i)
t − vt

∣∣∣− 1
2K2

K∑
i

K∑
j

∣∣∣x(i)
t − x

(j )
t

∣∣∣) (10)

The CRPS is considered to be a proper scoring technique
that prevents manipulations of the data from overestimating
the reconstruction skill; the measure reflects the mean abso-
lute error and narrowness of the ensemble distribution. We
use the CRPS as defined in Tipton et al. (2016) to calcu-
late the CRPS of the reconstructed GMT for each realiza-
tion (Eq. 10), where x(i)

t denotes a single member of a K-
member ensemble. We take the score as the average CRPS
over all realizations and use a Kolmogorov–Smirnov test on
the resulting distribution to determine whether it is signifi-
cantly different than the offline case with 95 % confidence.
As defined here, lower values of CRPS indicate better per-
formance, with a limiting case of CRPS= 0 being a perfect
ensemble fit (no error and no ensemble spread).

1Ensemble mean represents the average taken over all ensemble
members and all realizations.
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Figure 1. Comparison of global mean 2 m air temperature coefficient of efficiency (CE; a) and correlation (b) metrics for different blending
coefficients. The colored lines represent the different LIM calibration experiments using data from the Community Climate System Model v4
(CCSM4), NOAA 20th Century Reanalysis v2 (20CR), Max Planck Institute Earth system model (MPI), Berkeley Earth surface temperatures
(BE); or the persistence forecast case (Persist). The offline benchmark is depicted as the horizontal dashed black line.
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Figure 2. Reconstructed global mean 2 m air temperature compared to GISTEMP (solid black) and the offline experiment (dotted black) for
each online experiment. The GMT plotted for each forecasting experiment is from the blending coefficient that achieves the highest GMT
CE skill (CCSM4: a = 0.9, MPI: a = 0.9, 20CR: a = 0.9, BE: a = 0.7), except for the persistence case where a = 0.9 was used. The top
row shows the three forecasting experiments with the highest GMT CE score, while the bottom row shows the other two experiments.
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Table 1. Best value of the coefficient of efficiency (CE), correlation (r), and continuous ranked probability score (CRPS) validation metrics
for global mean 2 m air temperature. For each experiment, best values are given with the corresponding blending coefficients (a) that achieved
it and the percentage change compared to the offline case. An (∗) indicates which experiment achieved the best performance in a given metric.
Offline validation metrics are given for reference.

Full GMT Max CE %1CE CE a value Max r %1r r a value Min CRPS %1CRPS CRPS a value

Offline 0.77 0.90 12.5
Persist 0.77 0 0.0 ∗0.93 3 0.9 12.5 0 0.0
BE 0.82 7 0.7 0.91 1 0.8 10.7 −14 0.8
CCSM4 ∗0.84 9 0.9 0.92 2 0.8 ∗10.2 −18 0.9
20CR ∗0.84 9 0.9 0.92 2 0.9 ∗10.2 −18 0.9
MPI 0.83 8 0.9 0.91 1 0.8 10.8 −14 0.95
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Figure 3. Bootstrap uncertainty estimates (95 % confidence interval) for CE scores (a), correlation (b), and GMT trends (c). The blending
coefficient that achieves the highest GMT CE skill is shown for each experiment (CCSM4: a = 0.9, MPI: a = 0.9, 20CR: a = 0.9, BE:
a = 0.7), except for the persistence case where a = 0.9 was used.

4 Results and discussion

4.1 Validation of global mean temperature

Figure 1 displays 2 m GMT results validated against GIS-
TEMP for all tested values of the blending parameter a. Ev-
ery case except for the persistence forecast method yields CE
values greater than the offline case. Correlations are higher
than the offline benchmark for all experiments, including the
persistence forecast. Best skill is achieved between the a val-
ues of 0.7 to 0.9, with a steep drop in validation skill as a ap-
proaches unity (a pure LIM forecast) due to filter divergence
(the ensemble variance decreases with time, decreasing the
weight on the proxies, so that the reconstructed states diverge
from reality). Results for the CCSM4 and 20CR LIM display
the best overall CE performance, with a 9 % improvement
over the offline method. These two experiments also display
a 2 % increase in correlation and have slightly smaller cor-
relation than the persistence forecast experiment (Table 1).
Figure 2 shows the reconstructed GMT from each experi-
ment at the best blending coefficient (with respect to CE)
compared to GISTEMP and the offline case. As evidenced
by the high skill scores, the reconstructions capture the vari-

ability in the global temperature signal of GISTEMP quite
well. Compared to the offline experiment, the forecasting ex-
periments tend to decrease the amplitude of the interannual
variability, which is at times largely overestimated by the of-
fline experiment, and they tend to change the overall warm-
ing trend. There is no apparent systematic bias in the recon-
structed GMTs; thus, skill changes for the different experi-
ments are likely controlled by these two factors. Figure 3 dis-
plays the bootstrap estimate of 95 % confidence bounds for
reconstructed GMT CE, correlation, and trends at the same
blending coefficients as chosen in Fig. 2. For these blend-
ing choices, the CE scores for all LIM experiments show
significant increases compared to the offline CE, while the
persistence, 20CR, CCSM4, and MPI experiments show sig-
nificant increases in correlation. Additionally, reconstructed
GMT trends fall within the 95 % confidence interval of the
GISTEMP trend, except for the persistence case. The LIM
experiments show trends much closer to the mean estimated
GISTEMP trend than the offline case. CRPS values across
blending coefficients (Fig. 4) show similar skill behavior as
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Figure 4. Comparison of global mean 2 m air temperature contin-
uous ranked probability score (CRPS) for different blending coef-
ficients. The colored lines represent the different forecasting exper-
iments, while the offline benchmark is depicted as the horizontal
dashed black line. Starred points indicate a statistically significant
(95 % confidence) difference between the offline benchmark and
online experiment.

the CE metric (albeit mirrored in the vertical2). Specifically,
GMT validation with CRPS shows that all LIM experiments
outperform the offline method, with the CCSM4 and 20CR
LIMs again having the best performance (18 % better than
the offline case). All LIM experiments’ best CRPS scores are
also significantly better than the offline case with 95 % con-
fidence. Overall, CRPS gives nearly equivalent information
as CE about the skill of the GMT reconstruction. However,
as CRPS is a different metric, there are slight differences in
results for the MPI and BE LIM cases when comparing CE
and CRPS: the blending coefficient achieving the best score
shifts to the next highest a value in both cases, and the BE
LIM outperforms the MPI LIM when considering CRPS (Ta-
ble 1).

Both the CE and CRPS measures for different blending
coefficients are affected by the degree of fit to the warming
trend in the GISTEMP reference. The trends for all exper-
iments are shown in Fig. 5. The trend of the offline case
(a = 0) is 0.62 K/100 year, about 0.07 K/100 year above the
GISTEMP trend and near the edge of the GISTEMP trend
95 % confidence interval (Fig. 3). However, for the MPI and
CCSM4 LIM experiments, as well as the persistence forecast
experiment, the reconstructed trend increases as the blend-
ing parameter a increases. This increase in trend away from
the GISTEMP trend for the MPI and CCSM4 experiments is
reflected in the lowered CE (Fig. 1) and CRPS (Fig. 4) for
a values from approximately 0.0 to 0.6. The reconstructed
trend from the two CGCM-based LIM experiments begins

2Best results for CRPS occur at minimum values instead of the
maximum.
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Figure 5. Calculated trends from a least squares fit against the
reconstructed global mean 2 m air temperature (1880–2000). Col-
ored lines depict the calculated trends for each LIM experiment
across a range of blending coefficients, while the black lines repre-
sent the benchmark trends calculated from the offline reconstruction
(dashed) and GISTEMP data (solid).

to decrease around a = 0.6, where CE also shows a signifi-
cant increase towards maximum values. The persistence fore-
cast trend has the largest disagreement, increasing to approx-
imately 0.72 K/100 year for a = 0.9, which results in the CE
and CRPS never surpassing the offline benchmark in this
case. The 20CR LIM only increases the reconstructed trend
slightly over the GISTEMP trend for middle a values. The
BE experiment has a decreasing trend for increasing a and
drops to a very low trend of 0.38 K/100 year when a = 0.9.
Interestingly, though the trends for the MPI, CCSM4, and
20CR experiments are below that of the GISTEMP trend for
a = 0.95, their skill still outperforms the offline case in all
three metrics. Despite the mismatch in the overall trend, these
online forecasting methods still produce better matches of
phase and amplitude of GMT variability for the reconstructed
anomalies compared to the offline case.

The trend results also illustrate the relative amount of
proxy data utilization between these different experiments.
Given that every experiment uses the same prescribed list
of seeds to generate proxy record samples, the differences
in reconstructed trend can only arise from differences in
weighting of the proxies or the LIM forecasts. Since LIMs
are calibrated on detrended data and their forecast modes are
damped, the forecast contribution to a long-term global mean
trend is likely small; the trend is instead governed by utiliza-
tion of proxy information. For the EnKF PDA method, the
weighting of information is controlled by the prior ensemble
variance and proxy error variance. The proxy error variance
is fixed for all experiments we perform; thus, the changes
in the reconstructed trend are a result of how the LIM fore-
casts affect the ensemble variance. In all forecast experi-
ments, skill and the reconstructed trends drop off severely
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Figure 6. Comparison of detrended global mean 2 m air temperature CE (a) and correlation (b) metrics across different blending coefficients
for all experiments. The colored lines represent the different forecasting experiments, while the offline benchmark is depicted as the horizontal
dashed black line.

as a approaches 1.0. When using only forecast information
(a = 1.0), the ensemble variance collapses due to the damped
properties of the LIMs, which results in filter divergence.
The BE LIM case reaches its maximum CRPS and CE val-
ues at smaller a and also has the lowest reconstructed trends
of the LIM experiments. This suggests that the BE forecast
produces less ensemble variance than the other LIMs, possi-
bly due to forecast mode damping or poor projection of the
posterior analysis into the LIM EOF space. The eigenvalues
of the BE LIM’s leading two forecast modes have e-folding
times of 5.4 and 1.5 years. This is in the same range of the
leading forecast modes of the CGCM-calibrated LIMs (e.g.,
3.7- and 1.2-year e-folding times for the MPI LIM). Conse-
quently, a poor projection of the analysis ensemble onto the
forecast modes of the BE LIM is likely the cause of the re-
duced ensemble variance. The persistence forecast displays
an interesting disparity between the skill metrics; overall,
it performs the best in correlation but the worst in CE and
CRPS. Having the largest reconstructed trend suggests that
the persistence case has the highest weighting of proxy data.
With a persistence forecast there is no damping of recon-
structed spatial anomalies or truncation of the ensemble vari-
ance from projection into EOF space. The resulting higher
proxy weighting may explain why the persistence case corre-
lation is better than the other forecasting methods. The linear
observation models in each case are based on a calibration
against GISTEMP; thus, proxies with a better calibration fit
(higher correlation) with GISTEMP have less error variance
and therefore have more influence on the posterior analysis.
The persistence case allows more information from the influ-
ential (well-correlated) proxies into the analysis because the
prior variance is larger. However, from the CE and CRPS val-
ues, which are sensitive to more than just signal phase match-
ing, it is clear the general trend mismatch degrades the qual-

ity of the persistence reconstruction compared to the offline
benchmark.

Removing the linear trend from each case allows for an
examination of how well the reconstructions capture vari-
ability not associated with the warming trend (i.e., interan-
nual and decadal variability; evident in Fig. 6). Generally,
the performance increases for the detrended data over the of-
fline case are much larger than for the full time series. Com-
pared to validation with the full time series, the correlation
of the detrended offline case drops from 0.9 to 0.67, and the
CE drops from 0.77 to 0.29 (Table 2). With respect to CE,
all experiments (including the persistence method) improve
upon the offline benchmark. The 20CR LIM achieves the
best improvement over the offline case (72 % increase), while
the persistence case shows the least improvement (35 % in-
crease). Except in the BE LIM experiment, detrended corre-
lation metrics again increase slightly over the offline case.
The BE LIM remains near the benchmark correlation for
0.0< a < 0.7 and then drops below it. A CE improvement
with no change in correlation implies that the BE LIM im-
proves the detrended anomaly amplitudes and bias but does
not improve the signal timing compared to the offline case.

Both the CE and correlation skill metrics of the offline ex-
periment decrease when calculated on the detrended GMT. In
contrast, the CRPS improves by 7 % (minimizing from 12.5
to 11.6). CRPS rewards reduction in mean absolute error,
and narrowness of the forecast ensemble, whereas CE and
correlation depend more on variance properties of the recon-
structed time series. In removing the linear warming trend,
we remove a large degree of the time series’ variance and
subsequently lose the associated skill in CE and correlation.
In the case of CRPS, the linear trend is only a source of mean
error when it does not closely match the reference trend.
When we remove the trend, the mean errors decrease (the en-
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Table 2. Best value of the CE, correlation, and CRPS validation metrics for detrended global mean 2 m air temperature. For each experiment,
best values are given with the corresponding blending coefficients (a) that achieved them and the percentage change compared to the offline
case. An (∗) indicates which experiment achieved the best performance in a given metric. Offline validation metrics are given for reference.

Detrended GMT Max CE %1CE CE a value Max r %1r r a value Min CRPS %1CRPS CRPS a value

Offline 0.29 0.67 11.6
Persist 0.39 35 0.9 ∗0.74 11 0.9 10.1 −13 1.0
BE 0.43 48 0.8 0.67 0 0.1 10.0 −14 0.9
CCSM4 0.46 59 0.9 0.70 5 0.7 9.8 −16 0.9
20CR ∗0.50 72 0.9 0.71 6 0.9 ∗9.6 −17 0.9
MPI 0.43 48 0.9 0.69 3 0.7 10.1 −13 0.95

semble spread is unaffected) and the CRPS metric improves.
Figure 7 shows CRPS for all blending coefficients with de-
trended data. The behavior is quite similar to the full GMT
CRPS, and as the detrended CE reflects, even the persistence
forecast shows improvement over the offline method. An as-
pect that stands out with detrended CRPS is that the persis-
tence forecast achieves the best value when a = 1.0. A cur-
sory examination of the detrended GMT time series of the
persistence case compared to the detrended GISTEMP GMT
time series (see Supplement, Fig. S1) reveals that it cap-
tures some decadal variability over the instrumental record
but none of the interannual variability, i.e., the a = 1.0 per-
sistence reconstruction gives a smoothed representation of
the GMT. This again highlights a difference between the two
metrics of CE and CRPS. The CRPS metric, which general-
izes to the mean absolute error of the ensemble summed over
time, does not penalize the smoothed GMT signal approxi-
mately bisecting the interannual signal for a = 1.0. The CE
metric, which sums the squared errors of the ensemble mean
and then normalizes by the climatological variance, does pe-
nalize this behavior.

4.2 Validation of spatial fields

Here we compare the skill of the spatial fields with the offline
case using correlation and CE; CRPS is omitted because the
full spatial field ensembles are too large to store. For ease
of visualization, we provide CE difference maps to highlight
changes relative to the offline case, but full spatial skill maps
can be found in the supplementary material (Figs. S2 and S3).
Over the globe, skill is mostly positive, but there are a few re-
gions with highly negative skill departures such as the South-
ern Hemisphere oceans and the high-latitude North Atlantic–
Barents Sea corridor (Fig. 8). In the high-latitude Atlantic
region, the proximity to the sea ice edge seems to negatively
affect the ability to constrain the temperature field when us-
ing only proxies. All LIM-forecasting cases show improve-
ments to CE in the same North Atlantic–Barents Sea area
and across northern Europe into Asia; there are also smaller
skill increases across western North America. Studies of LIM
predictability have shown the North Atlantic–Barents Sea re-
gion can have forecast skill on annual and longer timescales
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Figure 7. Comparison of detrended global mean 2 m air tem-
perature continuous ranked probability score (CRPS) for different
blending coefficients. The colored lines represent the different fore-
casting experiments, while the offline benchmark is depicted as the
horizontal dashed black line. Starred points indicate statistical sig-
nificance (95 % confidence) between the offline benchmark and on-
line experiment.

(e.g., Hawkins and Sutton, 2009; Newman, 2013). This may
be one reason why skill increases are common in this area for
all LIM experiments. An inspection of grid point temperature
values northeast of Iceland (see Supplement, Fig. S5) shows
that the reconstructed temperature variance is largely over-
estimated in the offline case and that there is a slight trend
in the reconstruction that is not present in GISTEMP data.
The CE increase for the CCSM4 LIM experiment (increas-
ing from −7.2 to −1.7) relates to a temperature variance re-
duction by approximately 70 % compared to the offline case.
The CCSM4, MPI, and BE LIMs generally show large CE
increases in the high-latitude Southern Ocean. In contrast,
the reconstruction with the 20CR LIM does not improve the
Southern Ocean at all and has large deficiencies over many
ocean areas. The persistence case generally shows decreases
in CE across large areas of the globe. Of the global mean CE
for each grid, the CCSM4 LIM gives the best performance,
increasing the global mean CE by 0.09, followed by the MPI

www.clim-past.net/13/421/2017/ Clim. Past, 13, 421–436, 2017



430 W. A. Perkins and G. J. Hakim: LIM online reconstructions

Offline mean: 0.11 20CR - offline   Mean diff: –0.18
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Figure 8. Spatial maps displaying the difference in coefficient of efficiency (CE) from the offline case. Difference maps are displayed for
each forecasting experiment using the blending coefficient that achieves the highest full GMT CE skill (CCSM4: a = 0.9, MPI: a = 0.9,
20CR: a = 0.9, BE: a = 0.7), except for the persistence case where a = 0.9 was used. The reference CE of the offline case is shown in the
upper left and uses the same color scale as the difference maps. Area-weighted global average differences are given in the title of each panel.
All global mean differences except in the BE LIM case are significantly different than the offline benchmark with 95 % confidence.

LIM with an improvement of 0.06. The 20CR and persis-
tence cases show decreases in average spatial skill across
the grid, with the 20CR being worst with a global mean CE
change of−0.18. The BE LIM, while showing improvements
over Northern Hemisphere land areas, has compensating de-
creases in skill over the ocean that make the global mean CE
nearly equivalent to the offline case. All global mean CE val-
ues, except in the BE LIM case, are significantly different
(at 95 % confidence) from the offline case when comparing
grid point skill distributions using a Student’s t test. Changes
in spatial correlation (see Supplement, Fig. S4) are generally
small in regions where CE increases, which suggests that im-
provements are not related to signal phasing. However, some
of the large decreases in CE for the 20CR, BE, and persis-
tence experiments do coincide with areas of correlation de-
creases.

In the spatial results, there is a clear distinction between
LIMs calibrated using data from the shorter instrumental era
(20CR and BE), and the millennium-scale climate simulation
data (CCSM4 and MPI). Compared to the offline spatial skill,
large areas of CE skill degradation are apparent for both the

20CR and BE LIM reconstructions. The 20CR LIM CE skill
degradations are large in amplitude (1CE<−1) and mostly
over ocean regions. It is surprising that the 20CR LIM has the
worst spatial skill given that it has the best GMT time series
CE skill. However, previous CFR studies show similar results
(Annan and Hargreaves, 2012; Wang et al., 2014), where the
spatial averaging over a poorly reconstructed field can boost
the signal-to-noise ratio for large-scale indices enough to re-
sult in positive index skill. The situation is somewhat differ-
ent in this study. In the offline case, spatial skill is reasonably
positive, but when adding 20CR LIM forecasts, the spatial
CE skill decreases and the GMT CE skill increases. A pos-
sible interpretation for this behavior is that the degradation
in spatial field fidelity compensates for aspects of the GMT
that are overestimated in other experiments. For example, the
offline reconstructed GMT overestimates interannual vari-
ability during certain time periods when compared to GIS-
TEMP, but the usage of LIM forecasts mitigates this effect.
Compared to the CCSM4 LIM experiment, the reconstructed
GMT for the 20CR LIM experiment reduces the sum of the
squared error (numerator term in CE) by approximately 5 %.
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Figure 9. Leading mode of the empirical orthogonal function (EOF) basis for each LIM calibration. The total fraction of the variance
explained is given in the title of each panel. All EOFs have been multiplied by their corresponding singular value.

The bias accounts for only about 1 % of the total sum squared
error term, which leaves the trend and anomaly amplitude
agreement as primary candidates for the error reduction. As
shown earlier, the 20CR GMT trends tend to track lower than
the two CGCM LIM experiments and closer to the GISTEMP
trend (Fig. 5). The trend reduction in the 20CR experiment
appears to be caused by large areas of negative trends in the
Southern Hemisphere (see Supplement, Fig. S6).

The reason behind the poor spatial performance of the
20CR LIM appears to be linked to its EOF basis (Fig. 9).
The leading EOF of the 20CR experiment lacks the pattern
similar to ENSO and the Pacific Decadal Oscillation of the
other LIMs and instead focuses on variability structures in
the Southern Ocean. This is a region of high variability due
to its proximity to the storm track, but there are also fewer
pressure observations available for assimilation by the 20CR
(see Fig. 3 in Woodruff et al., 2011), especially during the
early portion of the record. Many of the large decreases in
CE are located in these same regions, which leads us to spec-
ulate that the features of the 20CR LIM may be influenced
by artifacts in the 20CR dataset. Another consideration for
the lower performance of both instrumental-era LIMs is that
they are based on shorter records that coincide with variabil-
ity related to anthropogenic forcing. The BE LIM displays
a primary EOF more similar to the CGCM-based LIMs but
still has skill problems over large ocean areas. Separating the
global warming trend from the LIM by means of linear de-
trending is bound to leave residual signals that affect LIM
forecast modes. A LIM based on a shorter record may not
have enough of a sample to properly characterize represen-
tative modes of variability over a longer time span. While

the BE LIM is based on 65 years of data, it produces much
less spatial skill degradation than the 150 years of 20CR data.
This suggests that there may be confounding factors influenc-
ing the skill in the 20CR experiment between the length of
record, linear detrending, and the assimilation method used
to create the 20CR data.

5 Conclusions

We have outlined and tested a new method for performing
online paleoclimate data assimilation (PDA) for climate field
reconstructions (CFRs) using linear inverse models (LIMs).
We tested four different LIMs empirically derived from sur-
face temperature data from the following datasets: Berke-
ley Earth (BE), the 20th Century Reanalysis (20CR), and
two last-millennium climate simulations (CCSM4 and MPI)
from the Coupled Model Intercomparison Project phase 5
(CMIP5). We also performed a persistence forecast experi-
ment for comparison. In general, we find that LIM-enabled
online assimilation improves upon the offline results for both
the global average and spatial field of 2 m air temperature.

Broadly speaking, the LIM experiments show good abil-
ity to reconstruct many aspects of the GISTEMP GMT
data, including interannual and low-frequency variability.
The largest skill improvements occur for skill metrics cal-
culated on the detrended GMT, which suggests that the LIM
forecasts add useful information at interannual timescales.
The coefficient of efficiency (CE) for detrended metrics show
an average increase around 57 %, while correlations increase
around 4 %. The continuous ranked probability score (CRPS)
metrics improve by an average of 15 % across all LIM ex-
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periments. Skill metrics tend to maximize for blending co-
efficients with a higher weighting on LIM forecast informa-
tion (0.7< a < 0.95). Spatial skill reveals that the addition
of LIM forecasting provides spatial information in regions
where the offline method performs poorly – including North-
ern Hemisphere land areas and the North Atlantic–Barents
Sea corridor. Large skill improvements in the North Atlantic
through the Barents Sea region are primarily a result of better
constraining the temperature variance at these locations. The
two LIMs calibrated using instrumental-era data (20CR and
BE) display large regions over the ocean where the skill de-
grades compared to the offline case. Even with the large areas
of improvement, the 20CR LIM decreases the area-weighted
average CE (−0.18), and the BE LIM area-weighted aver-
age breaks even. In contrast, the two CGCM-based LIM ex-
periments show area-weighted average CE increases of 0.09
(CCSM4) and 0.06 (MPI). When considering both GMT and
spatial skill results, the CGCM-based LIMs have the best
overall performance, with the CCSM4 LIM slightly outper-
forming the MPI LIM. The persistence forecast fails to im-
prove the more stringent GMT skill metrics (CE and CRPS)
as well as general spatial skill but does well in GMT time se-
ries correlation. Subsequently, this suggests that the improve-
ments of online reconstructions when using a LIM are due to
forecast information and not simply the addition of temporal
persistence.

Though we are reconstructing instrumental-era surface
temperatures, it is an interesting result that CGCM-calibrated
LIMs based on last-millennium (850–1850) simulations have
the best overall performance. This could mean that having
long-running samples of variability that do not contend with
influences from anthropogenic forcing are beneficial for re-
construction purposes. The LIMs used in these experiments
were all calibrated on data with the least-squares linear fit
trend removed. In order for LIMs based on observational data
sources to achieve similar results, it may be necessary to em-
ploy a more sophisticated method of filtering out the global
warming signal. However, one benefit of using CGCM-based
LIMs is that it enables forecasts for a much larger set of
climate-related quantities than are available from observa-
tions alone.

In this work, we have shown that we can improve both
GMT and spatial field skill over the offline EnKF PDA
method through the inclusion of a simple forecast model.
A previous comparison of offline and online PDA using a
CGCM as a forecast model found no discernible difference
in reconstruction skill (Matsikaris et al., 2015), and earlier
studies of the EnKF PDA method forewent the usage of for-
ward models, citing insufficient model skill to justify the ex-
pense (Bhend et al., 2012; Steiger et al., 2014). Our results
show that an online method can increase reconstruction fi-
delity, and more importantly we show that it can be done
using an empirical forecasting method that is nearly as com-
putationally efficient as the offline approach. As such, this
method provides a useful foundation for further investigation
of incorporating dynamical constraints of a forecast model
into climate field reconstructions.

Data availability. GMT and selected spatial reconstruction out-
put (for blending coefficients 0.7≤ a ≤ 1.0) along with code ca-
pable of running the experiments and the required preprocessed in-
put data (from CCSM4, MPI, 20CR, BE, GISTEMP, and PAGES
2k sources) are published under doi:10.6069/H5VD6WC0 (Perkins
and Hakim, 2017).
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Appendix A: Online assimilation algorithm

This section details the data assimilation equations used to
perform paleoclimate field reconstructions and the algorithm
steps for a single realization of an online climate reconstruc-
tion.

A1 Ensemble square root filter (EnSRF)

The EnSRF approach (Whitaker and Hamill, 2002) uses an
ensemble sampling approach to solve the Kalman filter equa-
tions by separating the ensemble mean (z̄b) and ensemble
perturbations about that mean (z′b = zb− z̄b). Note that zb

represents an augmented state vector, zb =

[
xb
ye

]
, combining

the prior state (xb) and the estimated observations (ye). The
EnSRF method allows for the serial assimilation of proxy
observations using the equations

z̄a = z̄b+K[yi − ȳei] (A1)

z′a = z
′

b+ K̃y′ei (A2)

for each proxy i = 1, . . .,p. The mean state z̄b is an m× 1
column vector, the ensemble perturbations z′b is an m× n
matrix, the mean of all estimated observations for proxy i,
ȳei , is a scalar value, and perturbations about the mean of all
estimated observations y′ei is a 1× n row vector. Note that
when observations are serially assimilated, the Kalman gain
(Eq. 2) simplifies to

K=
cov(z′b,y

′

ei)

var(y′ei)+ σ
2
i

, (A3)

where σ 2
i is the observational error for proxy yi and the de-

nominator is now a scalar value. The perturbation update
equation K̃ is given by

K̃=

[
1+

√
σ 2
i

var(y′ei)+ σ
2
i

]−1

K. (A4)

Finally, to adapt the hybrid assimilation scheme into the
EnSRF method, we incorporate the data source blending as
shown in Eq. (7). At this point, the blended state (ẑf

b) contains
both flow-dependent and static information. After incorpora-
tion, the Kalman gain (Eq. A3) becomes

K̂=
(a)cov(ẑf′

b , ŷ
f′
ei)+ (1− a)cov(zs′

b ,y
s′
ei)

(a)var(ŷf′
ei)+ (1− a)var(ys′

ei)+ σ
2
i

, (A5)

the perturbation Kalman gain (Eq. A4) becomes

˜̂K= [1+

√
σ 2
i

(a)var(ŷf′
ei)+ (1− a)ys′

ei + σ
2
i

]−1

K, (A6)

and the mean and perturbation updates from Eqs. (A1) and
(A2) become

z̄a = ¯̂z
f
b+ K̂[yi − ¯̂yf

ei] (A7)

z′a = ẑ
f′
b +

˜̂Kŷf′
ei . (A8)

A2 Assimilation algorithm

1. Choose a static ensemble prior (xs
b) of n members and

group of p proxies (y) to assimilate.

2. Calibrate observation models for each proxy record by
applying a univariate linear fit against colocated instru-
mental data.

3. Create an estimated observation ensemble (ys
e) for each

proxy record using their corresponding observation
model and augment the prior ensemble to form the static

state ensemble, zs
b =

[
xs

b
ys

e

]
. This is an (m+p)× n state

vector that will be updated during assimilation.

4. Consider the following for each reconstruction year:

a. If it is not the first reconstruction year, then reset zs
b

back to the original static prior (created in step 3)
and form a blended prior (ẑf

b) using Eq. (6).
b. Consider the following for each proxy yi from y =

[y1,y2, . . .,yp]:
i. If the current proxy has no observations for the

current year, then skip to the next proxy.
ii. Otherwise, select the matching estimated obser-

vations (ŷf
ei , y

s
ei) corresponding to the current

proxy yi from the augmented states (ẑf
b, zs

b).
iii. Calculate the mean and perturbation of the es-

timated observations and augmented state vec-
tors for use in the serial ensemble square root
filter method.

iv. Use the perturbations of ẑf
b, zs

b, ŷf
ei , and ys

ei
to form a blended Kalman gain as shown in
Eqs. (A5) and (A6).

v. Update the mean and perturbations of ẑf
b and

zs
b by using the blended gain matrices from

step (iv) in Eqs. (A7) and (A8).
vi. Reassemble za and zs

a by adding the ensemble
mean back into the perturbations. These will be
used for the next proxy assimilated as ẑf

b and zs
b.

c. After all proxies have been assimilated, extract the
climate field xa from the augmented analysis state
za.

d. Perform a LIM forecast on xa using Eq. (3), result-
ing in xf

b.

e. Recalculate the estimated observations yf
e from xf

b
and augment the state to form zf

b.
f. Return to step 4a.
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Appendix B: LIM calibration

The following steps are performed to empirically derive a
LIM from a given data source. The steps detail how we find
the mapping term G1 shown in Eq. (5).

1. If the calibration data contain seasonal signals (e.g.,
monthly data), then they are removed by smoothing data
with a 1-year running mean.

2. The data are converted into anomaly format by remov-
ing the climatological mean for each individual month.

3. The resulting anomaly is detrended. This removes a
large degree of the skill found by Newman (2013) when
using instrumental data, but we are focused on fore-
casting modes of interannual variability, not the secular
warming trend.

4. The detrended anomaly data are projected into EOF
space, where the leading eight modes of variability are
retained. The number of modes retained encompasses
those with e-folding times (decorrelation timescales) of
roughly 1 year or greater based on analysis of G1 (as
calculated in the following step) in these experiments.
Forecast modes with e-folding times much less than
1 year will likely have a small impact on annual fore-
casts due to the quick signal decay.

5. Finally, we determine G1 based on the lag-covariance
statistics of the calibration data. Specifically, C(1)=
G1C(0) is solved for G1: G1 = C(1)C(0)−1 where
C(1)=

〈
x(t + 1)x(t)T〉.
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The Supplement related to this article is available online
at doi:10.5194/cp-13-421-2017-supplement.
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